
2007 Presentation

Biodegradable Plastics: Computational Modeling & Simulation of Starch Composites

Presented By: Sachin Joshi¹,Yuxin Zhuang²,Yuming Zhang² Dr. S.M. Sadjadi¹, Dr. A. M. Mebel¹

1. Florida International University, Miami, USA 2. Computer Network Information Center (CNIC), Chinese Academy of Sciences, Beijing, China

14th,Nov 2007

FLORIDA INTERNATIONAL UNIVERSITY Miami's public research university

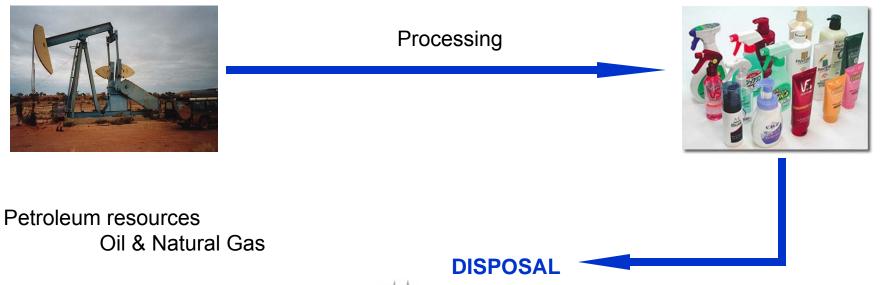
Overview

- Plastics
- Starch Composites
- Research Goals
- Computational Results
- Conclusions

Plastics

Age of Plastics

Day to day uses - Packaging Electrical appliances, automotive components Aircraft & Aerospace industries Biomedical Applications


Properties:

- High Strength
- Light weight
- Process-ability
- Chemical Stability

Plastics

Source of Plastics

EXHAUSTIBLE !!!

Burning of Plastic wastes – Air Pollution

Dumping ???

Micro-organisms CANNOT Break down the plastics into simple components

Non - biodegradable

Starch Composites

Natural Polymers

Starch & Cellulose – Natural polymers obtained from natural sources such as Corn, Rice, Grains etc.

They are broken down easily into simpler substances by microorganisms

End Products: Water, Carbon dioxide, Inorganic compounds which acts as nutrients for plants

<u>Starch</u> – A potential candidate for biodegradable polymer

Starch Composites

STARCH

Advantages - Starch is found abundantly in plants and is Inexpensive

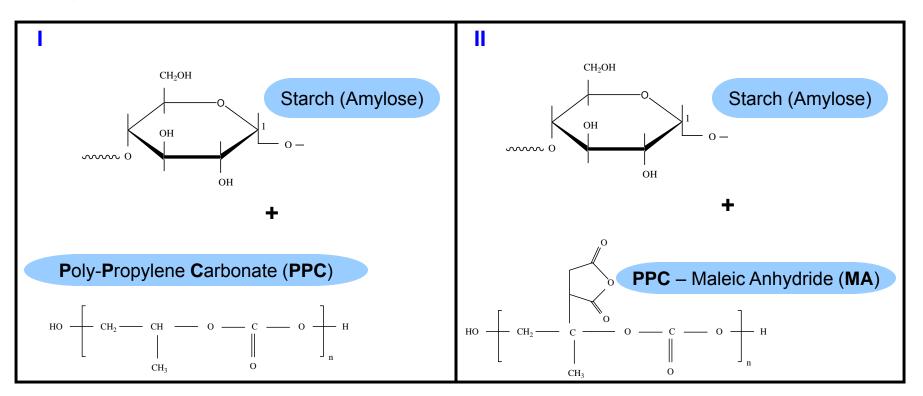
Bottlenecks - Starch is highly water-soluble and Weak in strength*.

How to improve the properties of starch?

Blend with HIGH STRENGTH polymer e.g. Poly-propylene carbonate (PPC)

Many strong polymers available to choose from......

Compatibility Issues......


How to make a choice??

*Godbillot L, Dole P, Joly C, Roge B, MAthlouti M. Analysis of water binding in starch plasticized films. Food Chemistry; 969(2006) 380-386

Research Goals

PROBLEM DESCRIPTION

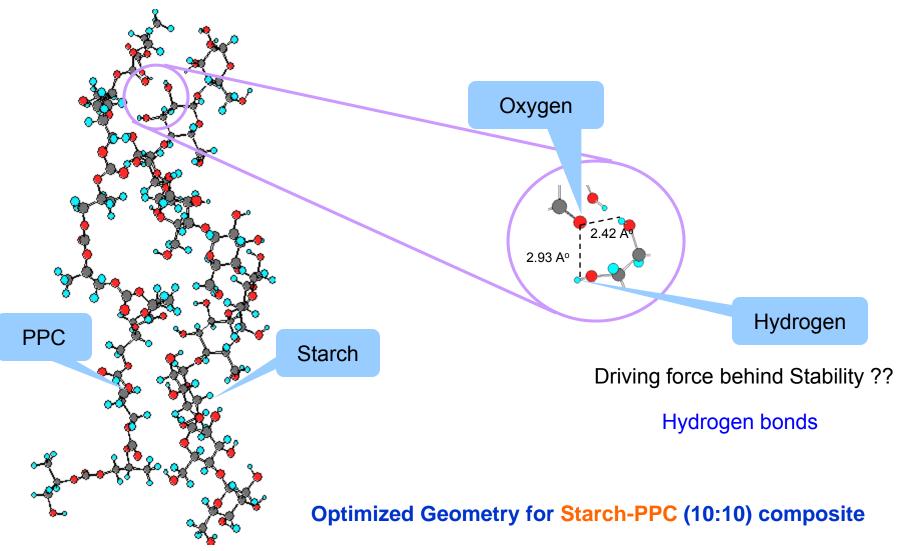
Study 2 composites of Starch

ISSUES to be addressed:

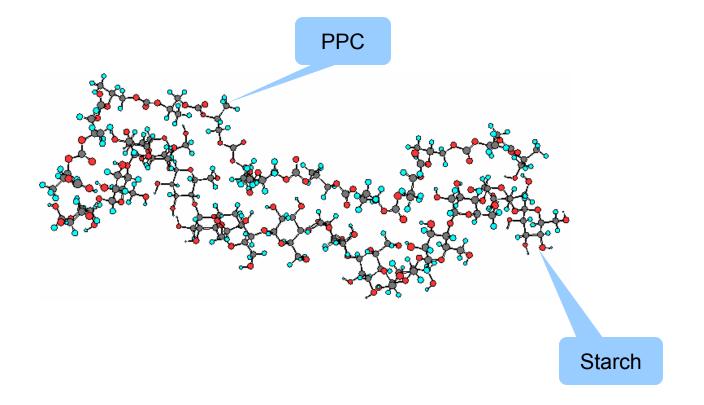
• Which polymer more compatible with starch? Strong Composite

Research Goals

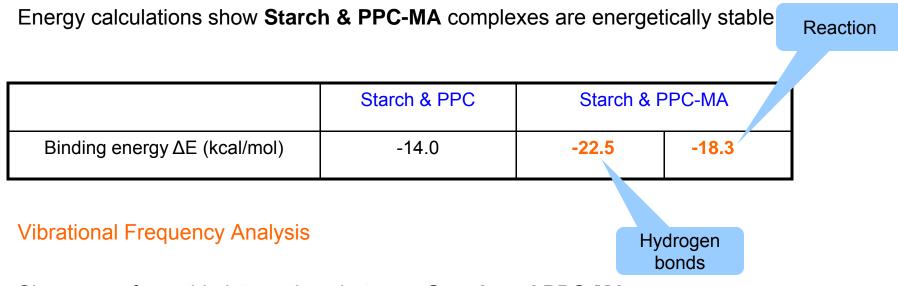
Computational Performance Analysis


- Perform 3 <u>geometry optimization</u> simulation runs using GAUSSIAN (molecular modeling software) which is installed on Chemistry Department cluster.
- Perform 3 <u>single point energy</u> simulation runs using MOLPRO (molecular modeling software) which is installed on GCB cluster in the following 2 phases:

(1) Single node computation.


(2) Multi-node computation (parallel computation).

- <u>Benchmarking computational results</u>: Investigate how Parallel Computing will save computing time.
 - How job size effects a parallel job performance.
 - How a job Scheduling System influences the efficiency of a job.


Computations run on GCB high performance cluster with 7 execution hosts 14 processors in total SGE6.0 Scheduling

Optimized Geometry for Starch-PPC (15:15) composite

Stability of composites

Show more favorable interactions between **Starch and PPC-MA**

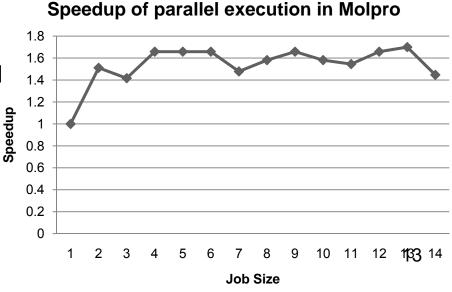
	Starch & PPC	Starch & PPC-MA
Change in C=O frequency (cm ⁻¹)	25	42

CPU times for 3 different jobs performed on MOLPRO with single-node computation

	1P	1A	1A – 1P
CPU time	29 mins:15 secs	2 hrs: 18 mins	1 day: 14 hrs

CPU times for a single job (1P) performed on MOLPRO with multi-node computation

# of Processors	1	2	3	4	5	6	7	8	9	10	11	12	13	14
CPU time (sec)	68	45	48	41	41	41	46	43	41	43	44	41	40	47


Effects of job size on parallel execution performance

- Parallel execution improves a job's performance by a non-linear speedup.
 - □ Speedup loss arises from
 - a. I/O reads and writes of temporary data
 - b. Communications in multi-node machines
 - c. System overhead
 - d. Parallelization overhead

Smaller job was selected.

With a bigger job – writing error occurred as tmp files were too large.

Small job – saved CPU time too small large processors have to be allocated

Scheduling policy improves efficiency of parallel execution

- One can allocate priorities to the job which expects long running time
- Identify advanced scheduling policies
 - I. Resource Reservation
 - II. Backfilling

Conclusions

- Starch & PPC composite compared with Starch & PPC-MA
- Molecular modeling computations performed GAUSSIAN & MOLPRO software
- Starch & PPC MA composite more stable than Starch & PPC
- PPC-MA more compatible with Starch as compared to PPC
- Parallel execution in GCB cluster improves the job's performance by a non-linear speedup

Thank You