

978-1-4244-1694-3/08/$25.00 ©2008 IEEE

A Modeling Approach for Estimating Execution Time of

Long-Running Scientific Applications

Seyed Masoud Sadjadi
1
, Shu Shimizu

2
, Javier Figueroa

1,3
, Raju Rangaswami

1
, Javier Delgado

1
,

Hector Duran
4
, Xabriel J. Collazo-Mojica

5

1: Florida International University (FIU), Miami, Florida, USA; 2: IBM Tokyo Research Laboratory,

Tokyo, Japan; 3: University of Miami, Coral Gables, Florida, USA; 4: University of Guadalajara,

CUCEA, Mexico; 5: University of Puerto Rico, Mayaguez Campus, Puerto Rico;

Abstract

In a Grid computing environment, resources are

shared among a large number of applications. Brokers

and schedulers find matching resources and schedule the

execution of the applications by monitoring dynamic

resource availability and employing policies such as first-

come-first-served and back-filling. To support

applications with timeliness requirements in such an

environment, brokering and scheduling algorithms must

address an additional problem - they must be able to

estimate the execution time of the application on the

currently available resources. In this paper, we present a

modeling approach to estimating the execution time of

long-running scientific applications. The modeling

approach we propose is generic; models can be

constructed by merely observing the application

execution “externally” without using intrusive techniques

such as code inspection or instrumentation. The model is

cross-platform; it enables prediction without the need for

the application to be profiled first on the target hardware.

To show the feasibility and effectiveness of this approach,

we developed a resource usage model that estimates the

execution time of a weather forecasting application in a

multi-cluster Grid computing environment. We validated

the model through extensive benchmarking and profiling

experiments and observed prediction errors that were

within 10% of the measured values. Based on our initial

experience, we believe that our approach can be used to

model the execution time of other time-sensitive scientific

applications; thereby, enabling the development of more

intelligent brokering and scheduling algorithms.

1. Introduction

A Grid computing environment provides a shared

resource infrastructure for a large number of applications.

Entities such as brokers and schedulers decide how

resources get partitioned among the set of applications.

Typical policies employed by these entities include back-

filling, first-come-first-served, etc. and are based on

dynamically monitoring application resource usage

behavior. While such policies work reasonably well to

balance application resource requirements across physical

resources and ensure high resource utilization, they fall

short when the scheduling task involves meeting task-

specific execution deadlines. To address timeliness

requirements, brokers and schedulers must be able to

estimate the execution time of the application on the

currently available resources in order to ensure that

scheduling decisions do not lead to deadline violations.

Extensive research exists in the area of resource usage

and execution time prediction. A large section of this

work focuses on platform-specific approaches [1,2,3,4,5],

which does not support resource usage prediction on

previously "unseen" target execution environments and

very few of these approaches address performance

prediction across different hardware configurations. This

is important since the set of available resources on the

Grid could have an arbitrary configuration. Some

approaches that do provide support for cross-platform

prediction of resource usage such as [6] and [7] are either

application specific or restricted to predicting for single-

node application executions alone. Other approaches are

intrusive in that they call for application source or binary

instrumentation.

Our approach differs from the other works in several

respects. First, our approach is application agnostic and

does not require application source or binary code

inspection or instrumentation. Second, unlike some

previous approaches, our approach does not require a

sample execution on the target platform before prediction.

Third, our approach is able to model execution scale,

thereby also addressing distributed applications;

especially, it allows prediction in a multi-cluster Grid

computing environment.

A key contribution of our approach is the generality of

our application resource usage model, which is a direct

result of constructing the model by merely observing the

application execution "externally" (i.e., observing its

resource usage rather than inspecting or instrumenting its

code). This allows a system design and implementation

that is completely oblivious of the semantics of the target

application. The advantage of such an application-

agnostic approach is more appreciated when application

semantics are complex, the source-code is not available,

or there is no documentation. The WRF (Weather

Research and Forecasting) application is an example of a

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 27, 2009 at 14:07 from IEEE Xplore. Restrictions apply.

time-sensitive, resource-intensive, distributed application

with a complex codebase and little to no documentation.
1

We use it to demonstrate the effectiveness of our approach

through the rest of the paper. Once a cross-platform

application model is built, predicting the execution time

on a different hardware configuration simply involves

populating the correct values for individual resources of

the new platform.

The proposed model estimates the application

execution time based on application resource usage

behavior. We note that the application execution time may

be dependent on the specific configuration of several

resource types. We started with a simple first step

assumption that the influence of a single resource on the

execution time of the application is independent from the

influences of the other resources. We concede that this

assumption may not be valid and some resource

correlations may influence application execution time and

intend to relax this assumption in future extensions of this

work. We shall demonstrate, even with the simplistic

assumption, that the model we developed is fairly

extensive, capable of incorporating multiple resources and

multi-node application executions.

The effectiveness of our approach was tested by

developing a model for predicting the execution time of

WRF in a multi-cluster environment. Several experiments

were done to validate the model. An error rate of less than

10% was observed, which leads us to believe that the

model is a viable option for developing timeliness

enhancements to brokering and scheduling applications

that take into account the dynamic resource availability of

target execution environments. It is worth pointing out

that we have applied the model proposed in this paper to

other applications with substantially different resource

consumption characteristics and have found it to be

effective [8].

The rest of this paper is organized as follows. In

Section 2, we describe the general approach taken by our

model, including the parameters we are modeling. In

Section 3, we introduce the mathematical model being

evaluated. Section 4 describes the software artifacts that

we developed for implementing our modeling and

prediction mechanisms. This section also describes how

this software was used to carry out our experiments to

evaluate the model. Section 5 shows the results obtained

from the experiments. Section 6 describes how the model

was validated, based on the accuracy of the results

obtained. Section 7 provides a more in-depth look at

related research (compared to that which has already been

covered above). Finally, in Section 8, we summarize the

paper and provide some future research directions.

1
 Several of such applications exist in the domain of scientific

computing and elsewhere. Ironically, these applications are also

often mission-critical.

2. Approach to Modeling Resource Usage

Modeling the resource usage of a distributed

application must take into account several aspects of the

computational environment. In this section we overview

our approach to modeling the static resource properties of

the target execution platform and execution-specific

factors affecting resource usage such as the degree of

parallelism. Model construction is formally addressed in

Section 3.

To construct our model, we build upon our initial work

on modeling single-node application execution [8].

Following the philosophy of the original approach, we

construct the model to be application-agnostic (as

opposed to application-specific). While profiling using

source-code instrumentation (an application-specific

approach) can provide valuable insight into application

behavior that is typically unavailable with external

observation, our application-agnostic approach provides

generality in the modeling, profiling, and prediction

mechanisms. Consequently, this enables a system design

and implementation that is completely oblivious of the

semantics of the target application. The latter is especially

important when application semantics are either complex,

or are unknown, or if the source-code is unavailable.

2.1 Modeling the Resources

Resource properties of the execution platform fall into

the three basic categories of computation, communication,

and storage. The key computational resources that affect

execution time include the CPU clock speed, L2 cache

size, and the front-side-bus (FSB) bandwidth.

Communication parameters include the maximum

bandwidth and latency of the network interconnection,

while storage parameters include the main memory size

and memory access bandwidth, as well as sequential and

random disk I/O bandwidths.

While the above set of parameters may seem excessive,

we point out that the significant parameters of the model

that affect the performance of a specific application is

typically a subset. Our modeling technique automatically

identifies these parameters; the remaining parameters are

typically eliminated from the model with sufficient

evidence. In the rest of this paper, however, we restrict

our WRF model to a subset of computation resources by

modeling the CPU clock speed and the number of nodes,

and ignore the influence of other resource properties for

the sake of simplicity of exposition.

2.2 Modeling Execution Parallelism

When modeling parallel and distributed applications

(as is typical for scientific applications), the two critical

parameters to address are platform heterogeneity and

execution scale.

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 27, 2009 at 14:07 from IEEE Xplore. Restrictions apply.

In our current model, we assume that all the nodes in

the target execution environment are identical, i.e. that

they have identical individual resource characteristics of

computation, communication, and storage. While we

realize that this may not apply to all distributed

environments, it is effective in addressing typical cluster

environments. More importantly, it allows us to construct

a practically usable model of the system. Relaxing this

assumption to accommodate heterogeneous clusters is an

important direction for future work.

We address execution scale by including in our model

a parameter associated with the number of processors

utilized during execution. For simplicity, our model

currently makes no distinction between shared and

distributed memory processors (e.g., SMP and Cluster).

2.3 Modeling Input Parameters

Accurate input parameter modeling requires knowledge

of application semantics. In the spirit of our application-

agnostic approach, we simplify the modeling of input

parameters by reducing input parameter modeling to a

load specification task for the developer. The load is

interpreted as linear, with higher values representing a

greater input load on the application.

In case load specification is infeasible (due to the

complexity of the application input data semantics), we

consider the execution of an application with a different

input data set as a “new application”, which must then

undergo independent profiling and modeling.

3. Application Resource Usage Model

In this Section, we present a model of application

execution correlating with application resource usage

characteristics. In constructing our model, we note that

applications may utilize different types of resources (as

elaborated in Section 2) and also demonstrate varied

patterns of resource usage during their execution.

Consequently, the execution time of each application is

typically dependent on different sets of resources. To take

this into account, we create application profiles to capture

and predict execution time for a specific application. As a

first step assumption, we suppose that the influence of the

resource properties of the target execution environment to

the application execution time takes a product form, in

which each term represents the influence of one or more

resource properties and is independent of other terms. It is

therefore represented, as follows:

∏
−

=

=
1

0

m

i

iexec CT , (1)

where execT is the execution time, iC is the i-th

contribution by one or more resources, and m is the

number of contribution terms. The term iC may contain

resource parameters such as CPU clock frequency, L2

cache size, FSB bandwidth and disk I/O bandwidth, as

mentioned in Section 2.

In this paper, we consider and focus on two types of

independent contributions: the parallelism of task

execution and CPU’s performance factor, which is

currently just it’s clock frequency.
2
 In considering parallel

task execution on more than one node, we further assume

that all nodes are homogeneous in terms of their resource

properties.
3
 Further, the model more naturally addresses

applications whose resource consumptions are more or

less consistent across time. If this is not the case, the

model would still identify all the dominant resource usage

factors, but would however be unable to capture the

dynamics of such usage over the duration of the

application execution. We use the following simple form

of the parallelism term, which reasonably assumes that the

execution time is in inverse proportion to the degree of

parallelism, or

paraPC 100 αα += , (2)

where paraP is the degree of parallelism such as the

number of processors available to the application, 0α and

1α indicate the application’s characteristics and will

differ for each application. The first term 0α indicates the

constant contribution such as execution overhead.

To include the CPU performance contribution, we use

the following simple form:

clockPC 101 ββ += , (3)

where clockP is the CPU clock frequency, 0β and 1β

indicate the application’s characteristics related to the

CPU performance as well as Equation (2).

After expanding the product form of Equation (1), we

have a simple summation form, as follows:

(4)

which is a linear form of explanatory variables (basic

terms for regression analysis) multiplied by application

2

 Please note that while a more exhaustive model would

consider additional resource properties (e.g., memory size) or

more complex dependencies (e.g., quadratic instead of linear),

our primary goal in this paper is to introduce our general

technique for resource usage modeling and prediction.

Therefore, we chose a minimal model to simplify presentation.

We minimize the effect of these parameters by making them

invariable in all experiments.
3
 While some cluster environments would consist of a set of

machines of almost similar configuration, there may be cases

where this assumption may not hold. Relaxing this assumption,

however, substantially complicates the modeling mechanism.

()
clockpara

clockparaexec

PP

PPT

11

100100

βα

βαβαβα

+

++=

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 27, 2009 at 14:07 from IEEE Xplore. Restrictions apply.

profile parameters that define application characteristics.

We can denote it by its following general representation:

∑
=

+=
n

i

iiexec yT
1

0 θθ (5)

iθ is the i-th application profile parameter which are

values reflecting constant contributions related to a

particular application and type of resource and iy is the i-

th explanatory variable which is a function of static

resource properties (e.g. clock speed) and the resource

competition status.

Equation (5) thus reduces the prediction task to a

problem of estimating profile parameters. We apply

regression analysis to solve the problem. While the

general technique we use, including the error analysis, is

detailed in [8], we summarize key steps of the estimation

process here. The observation at time t=k includes the

monitored execution time
][k

x on the static resource set:

 (6)

After obtaining N sets of observations, Equation (5) is

now represented with an error term, as follows:

 (7)

where

and ε indicates errors with zero mean. The error term

may include observation errors and model inaccuracy. We

then apply regression analysis to minimize the mean

square errors of ε to estimate the application profile

parameters, as follows:

 (8)

Note that the matrixes H and x grow in size for more

observations, however, the matrixes HH T
 and xH

T

are of the fixed size of)1()1(+×+ nn and 1)1(×+n ,

respectively. As a result, we do not need additional

storage to maintain the observations in general. It should

be also noted that the matrix HH T
 must have a valid

inverse matrix to obtain a solution to the above equation.

Thus, at least n+1 sets of independent observation data

are required for realizing a model of the application. For

reliable estimation, more than n+1 observation must be

maintained so as to decrease errors of observation.

4. Monitoring and Prediction

For profiling applications, we have developed two

software programs: (1) a monitoring program (called

amon) that runs on each compute node and reports the

execution time observed for any application with

appropriate values of explanatory variables every time it

detects completion of the application’s execution; and (2)

a prediction program (called aprof) that runs on a server

node and receives the reports from the monitoring

programs distributed over the compute nodes. It then

maintains the fixed-size matrixes HH T
 and xH

T
 for

each application in an incremental manner. For example,

each element ija of HH T
 is updated, as follows:

 (9)

where
][k

ija is the element value (nji ≤≤ ,0) at time

t=k, 0]0[=ija at t=0, and 1][

0 =k
y . Elements of xH

T

are also calculated in an incremental manner without

increasing the data size in the profiling program.

After the profiling program receives sufficient number

of independent observation results, that is, at least n+1

sets of data, it can estimate and calculate the profile

parameters by using Equation (8).

Once the profile parameters for a certain application

are estimated, then we can apply them to predict an

execution time for a certain resource, or

 (10)

where iy is the value of the i-th explanatory variable in

the given resource set and iθ̂ is the i-th estimated profile

parameter for the application. Thus, the prediction

program not only estimates application profile parameters

but also applies them to predict an execution time based

on an explanatory variable set (],,[1 nyy K).

The amon and aprof were designed to run in a

networked environment using a client/server architecture.

We run one instance of aprof on the head node of the

cluster, which is being profiled, to act as the server and

run one instance of amon on each compute node of the

cluster to act as clients. Due to our need to execute tests

for a number of different nodes and for a range of CPU

speeds (as will be explained in Section 5), it was

necessary to automate the experiment executions. Various

perl, bourne shell, and python based scripts were created

to execute these simulations automatically. The basic

functionality of these scripts is to gather the results in the

form of amon output and turn them into aprof compatible

prediction input to later compute the predictions that will

prove the accuracy of our model.

][][]1[][: k

j

k

i

k

ij

k

ij yyaa += −

[][]Tnnexec yyT θθθ ˆˆˆ1ˆ
101 LL=

εHθx +=

() xHHHθ
TT 1ˆ −

=

[]][][

1

][1 k

n

kk
yy L=y

[]
[]
[]Tn

TN

TN
xx

θθ L

L

L

0

]1[]0[

]1[]0[

=

=

=

−

−

θ

yyH

x

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 27, 2009 at 14:07 from IEEE Xplore. Restrictions apply.

5. Experiments and Results

Theoretically, by adding more processors to a

simulation one could assume that a scientific application

could run faster. This assumption is challenged by the

existence of a predicted point on the performance curve

where the running time of the application will worsen as

more processors are added to the system (i.e. the

saturation point). Several computational variables (e.g.

clock speed of the processor, processor load, number of

compute nodes, memory, network latency, network

bandwidth, communication overhead) determine the

execution time. In this section, we present a number of

experiments that help us analyze the behavior of WRF by

modifying two of the resource parameters, namely,

processor load and number of compute nodes.

To limit the number of concurrent changing variables,

we assume that the execution time of a forecast simulation

is based only on changes in clock speed and number of

compute nodes. For this, we have kept the effect of other

parameters such as memory minimized by making sure

that the value of the parameter either does not change or is

above an upper bound on the observed and target

platforms. The experiments were conducted using two

compute clusters located at Florida International

University. The first cluster is called GCB. This cluster is

based on the NPACI Rocks Linux distribution for

compute clusters, version 4.0. The cluster contains 8

nodes where each node contains two 32-bit x86 Intel

based CPUs, 1GB of main memory and uses a gigabit

network connection. The second cluster is called Mind.

Mind is also operating on Rocks version 4.0. The cluster

consists of 15 nodes, each containing dual Xeon 3.6GHz

processors and 2GB of main memory. They are also

connected through a gigabit network connection.

The WRF application running in a cluster environment

is capable of distributing the domain data points of a

forecast simulation into optimal size; this is called optimal

domain decomposition and is executed by WRF

communication RSL [9] layer. The code uses MPI [10]

communication subroutines for inter node communication,

and OpenMP [11] for intra node, inter processor

communication. These subroutines enable the program to

distribute the data and computational load among the

nodes of the cluster and the processors inside each node,

respectively. For the purpose of these experiments we

have used a small domain configuration to minimize the

size of our cases to match the size of our clusters’

computational power, while the effect of other resources

(e.g., memory size) will be minimal. As suggested by

meteorologists, we used a 75 by 75 domain decomposition

with 4km resolution, which contains 5625 grid points.

The approach to the experiments was to benchmark the

clusters by running experiments on different numbers of

available compute nodes as well as different effective

processing power. We employed three tools to assist us in

our experiments. To limit the effective clock speed of the

compute nodes, the open source CPUlimit [12] tool was

used. The other two tools, mentioned in Section 4, are,

amon and aprof. Amon was used to output run-related

resource-consumption statistics of WRF simulation

processes. Aprof was used for both receiving resource-

usage characteristics of the WRF simulations and

predicting the execution time for each of the simulations,

based on amon output. The percentage values used for the

CPU bindings were 100 (full utilization), 80, 60, 40, 30,

20, and 10 percent. All possible number of compute node

utilized (i.e. from one to seven in GCB and from one to 15

in Mind). For example, if the experiment being conducted

was 80-percent CPU bound then CPUlimit was run in

every node that was part of the experiment using 80 as the

“limit” parameter and wrf_arw_DM.exe as targeted

process. The following figures show the results.

Fig. 1. The execution times of WRF on GCB.

Fig. 2. The execution times of WRF on Mind.

Fig. 1 and Fig. 2 illustrate the curve obtained from

limiting the processor power for the same WRF forecast

simulation for different combinations of compute nodes

and clock speeds on GCB and Mind, respectively. The

performance decreases with less CPU power, but not

linearly. Fig. 3 illustrates the relationship between the

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 27, 2009 at 14:07 from IEEE Xplore. Restrictions apply.

inverse of the available CPU clock (i.e. CPU utilization)

and the execution time, ranging from 2 to 15 nodes for

Mind’s benchmark data. In the case of the inverse of the

CPU speed, the experiments confirm our assumptions

about the linear behavior that our resource usage model

captures in Equation (3). We obtained a similar linear

behavior in the case of the inverse of the number of nodes

(not shown for the sake of brevity) and the same

characteristics were observed in GCB’s output.

Fig. 3. The execution times plotted based on the inverse clock speed on

Mind demonstrates a linear performance curve.

6. Model Validation

To validate our experiments and results, we used aprof.

The mathematical model implemented in aprof is based

on the fact that execution time decreases linearly along

with the inverse of total computational power (tcp).

Where tcp is equal to the product of clock speed and

number-of-nodes. The amon results obtained from the

previously exposed benchmarks were used as input data

for the aprof program to predict different execution times

of a WRF execution and calculate the accuracy of the

prediction.

The model was first validated for within-a-cluster

predictions on each of the two clusters. For each series of

benchmarks (i.e. CPU-utilization and number-of-nodes

combination) the actual execution time was compared to

the predicted execution time. In GCB, the observed

within-a-cluster fractional error rate was 5.34%. The

median error rate was 5.86%. For Mind, the fractional

error rate was 5.66% and the median 3.80%. Note that the

prediction model uses the set of benchmark data (i.e. input

data) as a database for improvement of accuracy in its

predictions and as seen in the next prediction results, the

greater the size of this data set the smaller the average

fractional error.

For the across-clusters predictions, we used the same

paradigm, this time using the statistics from GCB

simulations (as inputs to aprof) to predict the execution

time in Mind, and vice versa. When using GCB’s statistics

to predict Mind’s execution time, we observed an average

fractional error of 9.97% and a median of 5.86%. When

using Mind’s input to predict GCB’s execution time, an

average of 5.83% fractional error and a median of 4.13%

were observed.

Our results demonstrate the validity of our model,

despite its simplicity. Further research and validation will

optimize our model, to account for differences in

architecture (32- vs. 64-bit), and many other variables that

might affect the accuracy of the model predictions. We

believe that by having conducted these interpolation and

extrapolation prediction scenarios we are able to show the

potential behavior of WRF based on CPU load and

number of compute nodes for future Grid enablement of

this application.

Fig. 4. The actual and estimated execution times for Mind's predictions.

Fig. 5. Across-cluster predictions of GCB's estimated time versus actual

time, using Mind's aprof input.

Fig. 4 portrays the actual values versus estimated

values of the Mind benchmark series. It is possible to see

that most of the high-error values occur for low number of

nodes, which is not considered important in a cluster

environment. Fig. 5 shows similar observations when

comparing actual times versus aprof-estimated execution

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 27, 2009 at 14:07 from IEEE Xplore. Restrictions apply.

times when using GCB’s input to predict Mind’s execution

times.

Since our testbeds were using different architectures,

we based our prediction tests and findings on number-of-

nodes, rather than number-of-processors. Mind is using

64-bit Xeon processors with hyperthreading support,

while GCB is using 32-bit Pentium 4 processors. For the

purpose of the experiments, the logical (hyperthreading)

processor was disabled on Mind. The fact that our results

were as good as they are despite using different

architectures reinforces the strength of our model.

7. Related Work

Extensive research has been carried out in the area of

resource usage prediction. While a large section of this

work focuses on platform-specific approaches [1,2,3,4,5],

our work enables resource usage prediction on previously

“unseen” target environments.

In the domain of Web services, the work defined in

[13] proposes a method for online profiling of component-

based services for predicting the response time. This work

models each service individually in terms of its CPU

utilization, CPU utilization for an RMI (Remote Method

Invocation) operation, and network delay. Adapting our

approach to multi-component and multi-platform web

services can use the component-based profiling techniques

proposed in the above work. However, a key general

difference is that this approach is application-domain

specific whereas the emphasis of our approach is to be

application agnostic.

Predictions of finer granularity jobs, which may be

useful for scheduling interactive applications, include a

method to predict the running times of tasks [14]. The

prediction method is based on the AR(16) model for CPU

load estimations [15]. The work in [16] proposes an

improvement on the AR(16) linear time-series model.

Wolski et al. have focused on making short and medium

term CPU load predictions [17]. Gibbons has proposed

prediction methods targeting more general applications in

which execution time predictions are obtained from the

run times of similar applications [18]. He used templates

to group similar applications. In later approaches [19, 20,

21], data mining techniques were used to search for good

templates for a specific application. The PACE system

[22] includes a method for predicting execution time and

network usage, among others. Their method is based on

both source code analysis and benchmarking analysis,

quite opposed to the application-semantics agnostic

philosophy of our work. In addition, one of the main

differences of our modeling approach from most of the

above is that our modeling framework allows for easy

correlation of different resource configurations in

conjunction with accounting for execution scale.

While there is abundant research on resource usage

prediction in general, very few of these address

performance prediction across different hardware

configurations. Dimemas [23] is a performance prediction

simulator which targets MPI applications. Performance

prediction can be based on previous runs on different

platform configurations. Different from this work our

approach focuses on online prediction. Yang et al.

propose cross-platform prediction by combining the

application’s performance in a reference system and the

relative performance between the two systems derived

from a partial execution on the target platform [6]. In their

technique, the source code of an application is analyzed to

identify the major time step loops and the source code is

then modified to include the API for the partial execution

measurements. Our work differs from this work in several

respects. First, our approach, being application agnostic,

is free from source-code instrumentation. Second, our

approach does not require a sample execution on the

target before prediction. Third, our approach is able to

model execution scale, thereby also addressing distributed

applications.

Marin and Mellor-Crummey [7] present a different

approach for cross-platform prediction of application

execution time. Their approach consists of statically

analyzing the application binary code to identify the

control flow graph for each routine as well as the loops

contained. A dynamic analysis then obtains the frequency

a routine is entered. Binary rewriting is used to augment

an application to monitor and log information. Platform

native instructions (e.g. SPARC instructions) are then

translated into a set of generic RISC instructions. While

this approach is more powerful than our proposed

approach since it can address multiple architectures, this

technique is restricted to predicting for single-node

application executions alone. Our work allows prediction

in a multi-cluster Grid computing environment.

8. Conclusion and Future Work

We have proposed a new approach for modeling the

resource usage and execution time of a distributed

application. The mathematical model we have proposed is

a cross-platform model and can be constructed using

observations external to the target application, requiring

no inspection or modification of the application source or

binary code. Experimental results using WRF executions

on two clusters with different hardware configurations

have demonstrated the efficacy of our approach for

predicting the execution time of a long-running scientific

application. Our cross-platform validation tests have

demonstrated good accuracy (prediction errors within

10%), even with substantially different systems, using

only two parameters of the execution environment, the

number of nodes and the CPU clock speed.

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 27, 2009 at 14:07 from IEEE Xplore. Restrictions apply.

Future work will include applying our model to other

distributed applications as well as extending our model to

include more resource parameters/contributors, such as

cache/memory size, network bandwidth, and storage

bandwidth. While we minimized the effect of these

parameters by making them invariable in our current

system, it is indeed important to validate our general

approach to modeling resource usage on these additional

non-trivial system resource properties. To target general

Grid computing environments, we will also work on

extending our parallelism model to address execution

environments with heterogeneous resources. With regards

to WRF in particular, we have come one step closer to

devising a complete solution to our goal of higher-

resolution weather prediction.

9. References

[1] S. Chen, I. Gorton, A. Liu, and Y. Liu. Performance

prediction of COTS component-based enterprise

applications. In Proceedings of CBSE5, 2002.

[2] M. V. Devarakonda and R. K. Iyer. Predictability of

Process Resource Usage: A Measurement-Based Study on

UNIX. In IEEE TSE, 15(12), December 1989.

[3] R. P. Doyle, J. S. Chase, O. M. Asad, W. Jin, and A.

Vahdat. Model-based resource provisioning in a Web

service utility. In USENIX Symposium on Internet

Technologies and Systems, 2003.

[4] H. Kalva, R. Shankar, T. Patel, and C. Cruz. Resource

estimation methodology for multimedia applications. In

Proceedings of SPIE, 2007.

[5] D. M. Swany and R. Wolski. Multivariate Resource

Performance Forecasting In the Network Weather Service.

Proceedings of Supercomputing, November 2002.

[6] L. T. Yang, X. Ma, and F. Mueller. Cross-Platform

Performance Prediction of Parallel Applications Using

Partial Execution. Proceedings of Supercomputing, 2005.

[7] G. Marin and J. Mellor-Crummey. Cross-architecture

performance predictions for scientific applications using

parameterized models. SIGMETRICS Perform. Eval.

Rev., 32(1):2–13, 2004.

[8] S. Shimizu, R. Rangaswami, and H. A. Duran-Limon.

"Platform-independent Modeling and Prediction of

Application Resource Usage Characteristics", Florida Int’l

University Tech. Report FIU-SCIS-TR-2007-07-05, 2007.

[9] J.G. Michalakes. “RSL: A Parallel Runtime System

Library for Regional Atmospheric Models with Nesting,”

IMA workshop on structured adaptive mesh refinement

grid methods, Minneapolis, MN, 12-13 Mar 1997.

[10] Gropp, W., Lusk, E., Doss, N., Skjellum, A., "A

High-Performance, Portable Implementation of the MPI

Message Passing Interface Standard", Parallel Computing,

North-Holland, vol. 22, pp. 789-828, 1996.

[11] Dagum, L., Menon, R. “OpenMP: an industry

standard API for shared-memory programming,”

Computational Science and Engineering, IEEE. Pages:

46-55, Vol: 5, Issue: 1, Publication Date: Jan-Mar 1998.

[12] Cpulimit - CPU Usage Limiter for Linux:

http://CPUlimit.sourceforge.net. Sept. 15 2007.

[13] C. Stewart and K. Shen. Performance modeling and

system management for multi-component online services.

Proc. of the 2nd USENIX NSDI, 2005.

[14] P. Dinda. Online Prediction of the Running Time of

Tasks. Cluster Computing, 5(3), 2002.

[15] P. A. Dinda and D. R. O’Hallaron. Host load

prediction using linear models. Cluster Computing,

3(4):265–280, 2000.

[16] Y. Zhang, W. Sun, and Y. Inoguchi. Predicting

Running Time of Grid Tasks based on CPU Load

Predictions. In Proceedings of the IEEE/ACM

International Conference on Grid Computing 2006.

[17] R. Wolski, N. T. Spring, and J. Hayes. Predicting the

CPU Availability of Time-shared Unix Systems on the

Computational Grid. Cluster Computing, 3(4), 2000.

[18] R. Gibbons. A historical application profiler for use

by parallel schedulers. In IPPS ’97: Proceedings of the

Job Scheduling Strategies for Parallel Processing1997.

[19] W. Smith, I. Foster, and V. Taylor. Predicting

Application Run Times Using Historical Information.

Lecture Notes in Computer Science, 1459:122–135, 1998.

[20] A. Goyeneche, G. Terstyanszky, T. Delaitre, S.

Winter, Improving Grid computing performance

prediction using weighted templates Conf. Proc. of the

UK e-Science 2007 All Hands Meeting, 2007.

[21]Francesc Guim, Ivan Rodero, Julita Corbalan, A.

Goyeneche. The Grid Backfilling: a Multi-Site Scheduling

Architecture with Data Mining Prediction Techniques.

CoreGrid Workshop in Grid Middleware 2007.

[22] S. A. Jarvis et al. Performance prediction and its use

in parallel and distributed computing systems. Future

Gener. Comput. Syst., 22(7):745–754, 2006.

[23] R. Badia, F. Escale, E. Gabriel , J. Gimenez, R.

Keller, J. Labarta, M. S. Müller, Perf. Prediction in a Grid

Environment, European Across Grids Conf., 2003.

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 27, 2009 at 14:07 from IEEE Xplore. Restrictions apply.

