
Runtime Fault-Handling for Job-Flow Management in Grid Environments

ABSTRACT

The execution of job flow applications is a reality today in

academic and industrial domains. In this paper, we propose an

approach to adding self-healing behavior to the execution of job

flows without the need to modify the job flow engines or

redevelop the job flows themselves. We show the feasibility of

our non-intrusive approach to self-healing by inserting a

generic proxy to an existing two-level job-flow management

system, which employs job flow based service orchestration at

the upper level, and service choreography at the lower level.

The generic proxy is inserted transparently between these two

layers so that it can intercept all their interactions. We

developed a prototype of our approach in a real Grid

environment to show how the proxy facilitates runtime handling

for failure recovery.

Keywords: job-flow management, meta-scheduler, generic

proxy, fault-tolerance, job-flows.

1. INTRODUCTION

In a Grid computing environment, individual jobs are

typically executed in the context of higher-level functional units

known as job flows. Our ongoing work in the Job Flow

Management project [1] addresses many specific issues related to

job flow management in Grid computing environments. In this

paper, we focus on adding self-healing to job flow management

in a non-intrusive manner. We have developed a two-level

distributed architecture that is illustrated in Figure 1. As shown

in the figure, the main middleware components that are involved

in this architecture are the job flow manager, responsible for

maintaining concurrency and sequencing among jobs in the flow,

and the meta-scheduler, responsible for resource selection and

job execution control.

In this figure, there are two resource domains, namely, FIU

and IBM and each are managed by their representative job flow

manager along with a meta-scheduler. The job-flow manager

submits individual jobs to the meta-scheduler or partial

workflows (sub-flows) to the peer job flow managers. Within a

domain, the meta-scheduler can route jobs for execution to

multiple local schedulers. Peering relationships between job-flow

managers and between meta-schedulers are established through a

set of protocols that exchange dynamic resource capacity and

capability information. This enables them to route sub-flows/jobs

for remote execution at partner domains.

IBM FIU

Job-Flow

Manager

Job-Flow

Manager

Peer-to-peer

Protocols

Application

or Portal

Application

or Portal

User

Local
Resources

Local
Resources

Local
Resources

Local
Resources

Meta-

Scheduler

Meta-

Scheduler

Local
scheduler

Local
scheduler

Local
scheduler

Local
scheduler

1

2 3 4

5 6

7

1

4

6

1

2 3

5

7

12357 1 4 6

Resource

Policies

Resource

Policies

User

Figure 1. A distributed architecture for flow manager and meta-

scheduler spanning multiple domains.

Due to the long running nature of these jobs and sub-flows,

the support for fault tolerance and recovery strategy is especially

important. Moreover, the interaction of Grid services with

dynamic distributed resources makes fault-tolerance a critical

aspect of job flow management. Run-time job flow failures need

to be addressed for individual jobs as well as for sub-flows.

Specification of recovery actions and handling of individual job

failures can be handled at the local scheduler level. However,

the failure of a single job within a job-flow often cannot be

treated in isolation and recovery actions may need to be applied

by taking the dependency between jobs into consideration. Thus,

specifying flow level recovery mechanisms become important in

such scenarios.

A prevalent way to handle flow level compensation is to

include failure management logic at modeling time [2].

However, this requires modification of the original workflow to

incorporate additional fault-handling logic and also assumes pre-

knowledge of all different failure scenarios that can arise. An

alternate approach is to handle these job failures at runtime,

without explicit changes to job flow process logic. The

TRAP/BPEL [3] framework employs this approach for stateless

Web service orchestration. In TRAP/BPEL, an intermediate

proxy intercepts calls from the flow engine, and deploys runtime

failure handling on behalf of the workflow. The advantage of

this technique is that no changes need to be made to the

workflow at modeling time. In this paper, we utilize this

approach to enable runtime job-flow failure handling in Grid

environments, with dynamic selection of recovery policies.

Gargi Dasgupta
1
, Onyeka Ezenwoye

2
, Liana Fong

3
, Selim Kalayci

4
, S. Masoud Sadjadi

4
 and

Balaji Viswanathan
1

1
IBM India Research Lab, New Delhi, India, {gdasgupt,bviswana}@in.ibm.com

2
South Dakota State University, Brookings, SD, USA, onyeka.ezenwoye@sdstate.edu

3
IBM Watson Research Center, Hawthorne, NY, USA, llfong@us.ibm.com

4
Florida International University, Miami, FL, USA, {skala001,sadjadi}@cs.fiu.edu

International Conference on Automonic Computing

978-0-7695-3175-5/08 $25.00 © 2008 IEEE
DOI 10.1109/ICAC.2008.16

201

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 27, 2009 at 14:05 from IEEE Xplore. Restrictions apply.

2. PROTOTYPE IMPLEMENTATION

This section presents our fault-tolerant job flow management

prototype setup across two sites at IBM and FIU. For building

the IBM domain, we use IBM’s Websphere Process Server

(WPS) and IBM Tivoli Dynamic Workload Broker (ITDWB) [4]

components. For building the FIU domain, we use the

ActiveBPEL engine and the Globus Toolkit 4 (GT4) [5] and

Gridway meta-scheduler [6]. The prototype implementation

resulted in the overall job-flow execution environment in Figure

2. An adapted job-flow in WS-BPEL format is intercepted by a

generic proxy that uses the underlying meta-scheduler

functionality to submit job, monitor job or get notifications about

the job. In case of a failure, the generic proxy makes use of its

policies and takes the necessary action specified in the policy.

The meta-scheduler accepts JSDL job and data activity

submissions from the flow manager and executes them. It also

optionally provides a notification on job state changes (e.g.,

GRAM job state changes as specified in [7]). Our meta-

scheduling implementation [1] provides the necessary interface

to the job-flow manager and facilitates the scheduling jobs in

remote domains. Two different implementations with different

internal architecture and components at FIU and IBM can

basically submit and monitor JSDL jobs through a peer-to-peer

protocol. Similar to the job-flow manager, but in a more detailed

level, the meta-scheduler contains the intelligence for deciding

which jobs to route locally and which to dispatch to remote

domains. This comprises the brain of the system and particular

scheduling algorithms used are dependent on the domain and its

specific policies.

Figure 2. Prototypical architecture of our fault-tolerant job-flow

management.

For runtime failure management at the level of individual jobs,

we use the generic proxies. The proxy sits between the flow

manager and the meta-scheduler, and intercepts calls in both

directions. For all monitored invocations, the meta-scheduler

interface calls are replaced with calls to the proxy interface.

However, the proxy is transparent to the flow manager and to the

meta-scheduler; therefore, it imposes no changes in either

component. A recovery component kicks in when a failure is

detected for any adapted component. In the recovery phase, the

proxy applies recovery policies to the failed invocations. The

policies contain rules to detect failures and a sequence of

recovery actions to follow on failure detection.

An extensible repository of job flow as well as fault-tolerant

patterns is maintained at the proxy. Job flow patterns comprise of

common behavior that is prevalent in job-flows, represented

using the combination of a flow language and a job definition

language (e.g., a job submission activity is typically followed by

a monitor job state activity, or a job submission activity is

typically preceded by a data-staging activity etc.). The proxy by

virtue of maintaining conversational state for each job is well

equipped to detect and handle failures. Fault-tolerant patterns

comprise common reusable recovery actions that can be specified

for job flow failures (e.g. re-submit job with modified job

parameters, or re-submit job to a different domain etc.). The

mapping between job flow patterns and fault tolerant patterns can

be manually defined at modeling time by the application

developer or using pre-defined rule trees. This design of the

proxy allows designers to dynamically define new failure

handling.

3. CONCLUTION AND FUTURE WORK

In this paper, we present a fault-tolerant architecture for

handling failures at runtime in case of long-running workflow

environments, using a job-flow manager, a generic proxy and a

meta-scheduler. We build a real prototype solution using

standard-based components that demonstrates feasibility of the

approach. In future work, we plan to extend our work to a

comprehensive set of failure scenarios, explore automatic

generation of mapping between job-flow patterns and fault-

tolerant patterns and study their performance impacts.

Acknowledgment: This work was supported in part by IBM and

the National Science Foundation (grants OISE-0730065, OCI-

0636031, REU-0552555, and HRD-0317692).

REFERENCES

[1] Rosa Badia et al. High Performance Computing and Grids in Action,

chapter Innovative Grid Technologies Applied to Bioinformatics and Hurricane

Mitigation. IOS Press, Amsterdam, 2007. (accepted for publication)

[2] W. Tan, L. Fong, and N. Bobroff. Bpel4job: a fault-handling design for job

flow management. In Proceedings of Fifth International Conference on Service

Oriented Computing (ICSOC), 2007

[3] Onyeka Ezenwoye and S. Masoud Sadjadi. TRAP/BPEL: A framework for

dynamic adaptation of composite services. In Proceedings of the International

Conference on Web Information Systems and Technologies (WEBIST 2007),

Barcelona, Spain, March 2007.

[4] V. Gucer, M. Lowry, and F. Knudsen. End-to-End Scheduling with IBM

Tivoli Workload Scheduler Version. IBM Press, 2004.

[5] I. Foster and C. Kesselman, Globus: A Metacomputing Infrastructure

Toolkit, Proceedings of the Workshop on Environments and Tools for Parallel

Scientific Computing, SIAM, Lyon, France, August 1996.

[6] E. Huedo, R.S. Montero and I.M. Llorente. The GridWay Framework for

Adaptive Scheduling and Execution on Grids, Workshop on Adaptive Grid

Middleware, Intl. Conf. Parallel Architectures and Compilation Techniques

(PACT 2003), New Orleans, USA, September 2003.

[7] Globus Alliance. GT 4.0 WS GRAM: Developer's Guide. Available from

http://www.globus.org/toolkit/docs/4.0/execution/wsgram/develop-er-

index.html

Globus Gridway

Meta-Scheduler

ActiveBPEL

Engine

P
o
rta
l C
lie
n
t

IBM TDWB

Meta-Scheduler

Re-submit job to

remote domain

Generic Proxy Generic Proxy

IBM’s Websphere

Process Server

Local
Scheduler

Local
Scheduler

Local

Scheduler

Local
Scheduler

Local

Scheduler

Domain 1: IBM Domain 2: FIU

Re-poll job at

remote domain

P
o
rta
l C
lie
n
t

Globus Gridway

Meta-Scheduler

ActiveBPEL

Engine

P
o
rta
l C
lie
n
t

P
o
rta
l C
lie
n
t

IBM TDWB

Meta-Scheduler

Re-submit job to

remote domain

Generic Proxy Generic Proxy

IBM’s Websphere

Process Server

Local
Scheduler
Local
Scheduler

Local
Scheduler
Local
Scheduler

Local

Scheduler

Local
Scheduler

Local

Scheduler

Domain 1: IBM Domain 2: FIU

Re-poll job at

remote domain

P
o
rta
l C
lie
n
t

P
o
rta
l C
lie
n
t

202

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 27, 2009 at 14:05 from IEEE Xplore. Restrictions apply.

