

Towards an Energy-Aware Service-Oriented Architecture for GreenLight

July 1st, 2009

Ingolf Krueger,

Claudiu Farcas, Filippo Seracini

- GreenLight overview
- Challenges and motivation
- Our contribution
- Towards energy efficiency
- Service Oriented Architectural Blueprint
- Mapping to Deployment
- Future work

NSF Award to UCSD for \$2M (equipment)

Objectives:

- Understand energy consumption related to task execution
- Create an infrastructure that allows to decrease the environmental impact of computation
- Provide to users different modes of computation (i.e. max performance, max energy saving, min computational cost, etc)

Industry

- Microsoft's \$500 M new data center in Chicago
 - 220 containers
 - Up to 550,000 servers
- Google
 - patented datacenter-in-a-shipping-container
 - Water-based data center (waves powered)

Government

Data center energy efficiency research part of the US stimulus package

Community

 GreenLight got CENIC Experimental/Developmental Applications 2009 Award

Inside the Blackbox

Challenges

Our Team's contributions

- Create a SOA-based cyberinfrastructure to:
 - Manage and control the Blackbox
 - Run scientific experiments (various tasks)
 - Provide green data related to task execution
 - Apply strategies to improve energy consumption, minimize thermal footprint, reduce noise, etc

Cyberinfrastructure

 Scenario: A scientist is trying to setup up a facility out of resources (instruments, computing capabilities, storage) spread out over a variety of authority domains

Challenges

- Resource discovery (instruments, storage, computation)
- Resource access (seamlessly across infrastructure)
- Resource Model (adding/ removing an instrument, ...)
- Authentication, authorization, and other policies,
- Governance
- Capability presentation

Requirements Engineering

 GreenLight Researchers are interested in both producing and consuming greening data such as temperature and power measurements

A few important questions:

- What are the data sources?
- What can be measured?
- How is data stored?
- How is data represented?
- Who wants what?
- How to share data?
- How to best use data?
- Strategies to optimize power consumption?

Domain Modeling

Multiple data collection points

Air temperature (40 sensors for rack-level air, hundreds internal)

Architectural Blueprint

Recursive pattern as integration strategy for GreenLight components

Main entities of the architectural blueprint

- Service/Data Connector interaction between the Rich Service and its environment
- the Messenger and the Router/Interceptor communication infrastructure
- Rich Services encapsulate various application and infrastructure functionalities

Rich Application Services

- interface directly with the Messenger
- provide core application functionality

Rich Infrastructure Services

- interface directly with the Router/Interceptor
- provide infrastructure and crosscutting functionality
- Examples: policy monitoring/enforcement, encryption, authentication

Mapping to Deployment (1)

- Provisioning of computational resources
 - Choosing an appropriate infrastructure resource management platform: Rocks, Perceus, OpenQrm, OpenNebula, Eucalyptus (EC2)
 - Job dispatcher: SGE, Condor
 - Execution of scientific workflows: Pegasus
- Provisioning of storage resources
 - Localized vs. Distributed file system (e.g., Thumpers vs. local hard drives)
 - Analyze tradeoffs between bandwidth, performance, power consumption etc.

Mapping to Deployment (2)

Data

- Collection: Intermapper
- Data storage: postgreSQL
- Data model to store/organize power related data: XDR,
 SDXF
- Data model to communicate such data: DAP, XML/SOAP

Control Models

- What can be controlled and how (i.e. fan, cpu speed)
- Algorithms under development by Tajana's group

Application integration

- ESB strategy: Mule, ServiceMix
- Message Oriented Middleware: AMQP, Jabber/XMPP

- Models for "green data" for various applications: Proteomics, Ocean Observatories, Software Engineering, ...
- Resource model for GreenLight resources (e.g., CPUs, VMs, nodes, etc)
- Usage policies and adequate scheduling algorithms to improve efficiency
- Deployment of SOA-based infrastructure to use and manage the *Blackbox*
- Expose the "green data" as web services & portal

Thank you!